Закон Ома для однородного участка цепи. Сопротивление проводников. Сопротивление однородного проводника. Сверхпроводимость

Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. 10 класс. Физика. – Объяснение нового материала

Закон Ома для однородного участка цепи. Сопротивление проводников. Сопротивление однородного проводника. Сверхпроводимость

Сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Ома оказался справедливым не только для металлов, но и для растворов электролитов. Сформулированный закон имеет место для так называемого однородного участка цепи – участка, не содержащего источников тока.

Математическая запись закона Ома проста, как и его формулировка, но экспериментально подтвердить эту зависимость очень трудно. Сила тока, протекающая по участку цепи, мала. Поэтому используют достаточно чувствительные приборы. Г.

Ом изготовил чувствительный прибор для измерения силы тока, а в качестве источника тока использовал термопару. Действие амперметра и вольтметра основано на применение закона Ома для участка цепи.

Угол поворота стрелки прибора пропорционален силе тока.

Из математической записи закона Ома:

можно выразить напряжение :

и сопротивление проводника:

.

Таким образом, закон Ома связывает три параметра, характеризующих постоянный электрический ток, проходящий по проводнику, и позволяет находить любой из них, если известны два других.

Закон Ома имеет границы применимости и выполняется только в том случае, когда при прохождении тока температура заметно не меняется. На вольт–амперной характеристике лампы накаливания видно, что график сильно искривляется при напряжении выше 10В, значит, закон Ома выше этого напряжения применять нельзя.

Также нельзя говорить, что сопротивление проводника зависит от напряжения и силы тока в цепи. Сопротивление участка цепи зависит от свойств проводника: длины, площади поперечного сечения и материала, из которого состоит проводник.

где l-длина проводника, s-его площадь поперечного сечения.

ρ –удельное сопротивление проводника – это физическая величина, характеризующая зависимость сопротивления проводника от материала, из которого он изготовлен.

Удельное сопротивление показывает, каким сопротивлением обладает сделанный из этого вещества проводник длиной 1м и площадью поперечного сечения 1м2 .

Из формулы видно, что единицей измерения в системе СИ является Ом·м. Но так как площадь поперечного сечения проводника достаточно мала, используют единицы измерения

при вычислении площадь поперечного сечения проводника следует выражать в мм2.

В заключении хочется заметить, что Ом начал свои опыты, когда был учителем физики в гимназии.

В своих экспериментах Ом брал куски проволоки одинакового диаметра, но разного материала и изменял их длину таким образом, чтобы в цепи сила тока имела одинаковое значение.

Находящаяся рядом магнитная стрелка отклонялась при прохождении тока в цепи. Установив связь между напряжением и силой тока, Г. Ом вывел один из основных законов постоянного тока.

Последовательное соединение проводников

Электрические цепи, с которыми приходится иметь дело на практике, обычно состоят не из одного приёмника электрического тока, а из нескольких различных, которые могут быть соединены между собой по-разному. Зная сопротивление каждого и способ их соединения, можно рассчитать общее сопротивление цепи.

На рисунке а изображена цепь последовательного соединения двух электрических ламп, а на рисунке б — схема такого соединения. Если выключать одну лампу, то цепь разомкнётся и другая лампа погаснет.

Рис. Последовательное включение лампочек и источников питания

Мы уже знаем, что при последовательном соединении сила тока в любых частях цепи одна и та же, т. е.

I = I1 = I2

А чему равно сопротивление последовательно соединённых проводников?

Соединяя проводники последовательно, мы как бы увеличиваем длину проводника. Поэтому сопротивление цепи становится больше сопротивления одного проводника.

Последовательное соединение проводников

Общее сопротивление цепи при последовательном соединении равно сумме сопротивлений отдельных проводников (или отдельных участков цепи):

R = R1 + R2

Напряжение на концах отдельных участков цепи рассчитывается на основе закона Ома:

U1 = IR1, U2 = IR2.

Из приведённых равенств видно, что напряжение будет большим на проводнике с наибольшим сопротивлением, так как сила тока везде одинакова.

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

U = U1 + U2.

Это равенство вытекает из закона сохранения энергии. Электрическое напряжение на участке цепи измеряется работой электрического тока, совершающейся при прохождении по участку цепи электрического заряда в 1 Кл.

Эта работа совершается за счёт энергии электрического поля, и энергия, израсходованная на всём участке цепи, равна сумме энергий, которые расходуются на отдельных проводниках, составляющих участок этой цепи.

Все приведённые закономерности справедливы для любого числа последовательно соединённых проводников.

Пример 1. Два проводника сопротивлением R1 = 2 Ом, R2 = 3 Ом соединены последовательно. Сила тока в цепи I = 1 А. Определить сопротивление цепи, напряжение на каждом проводнике и полное напряжение всего участка цепи.

Запишем условие задачи и решим её.

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

Расчет параметров электрической цепи

при параллельном соединении сопротивлений:

Источник: https://www.kursoteka.ru/course/3296/lesson/11139/unit/27686

Конспект

Закон Ома для однородного участка цепи. Сопротивление проводников. Сопротивление однородного проводника. Сверхпроводимость

В предыдущем конспекте «Электрическое сопротивление» был установлено, что сила тока в проводнике зависит от напряжения на его концах.

Если в опыте менять проводники, оставляя напряжение на них неизменным, то можно показать, что при постоянном напряжении на концах проводника сила тока обратно пропорциональна его сопротивлению.

Объединив зависимость силы тока от напряжения и его зависимость от сопротивления проводника, можно записать: I = U/R. Этот закон, установленный экспериментально, называется закон Ома (для участка цепи).

Закон Ома для участка цепи: сила тока в проводнике прямо пропорциональна приложенному к его концам напряжению и обратно пропорциональна сопротивлению проводника. Прежде всего закон всегда верен для твёрдых и жидких металлических проводников. А также для некоторых других веществ (как правило, твёрдых или жидких).

Потребители электрической энергии (лампочки, резисторы и пр.) могут по-разному соединяться друг с другом в электрической цепи. Два основных типа соединения проводников: последовательное и параллельное. А также есть еще два соединения, которые являются редкими: смешанное и мостовое.

Для последовательного соединения проводников справедливы законы

1) сила тока во всех проводниках одинакова; 2) напряжение на всём соединении равно сумме напряжений на отдельных проводниках; 3) сопротивление всего соединения равно сумме сопротивлений отдельных проводников.

Параллельное соединение проводников

Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Так, электрические лампочки, чайник, утюг и пр. включаются параллельно.

При параллельном соединении проводников все проводники одним своим концом присоединяются к одной точке цепи. А вторым концом к другой точке цепи. Вольтметр, подключенный к этим точкам, покажет напряжение и на проводнике 1, и на проводнике 2. В таком случае напряжение на концах всех параллельно соединённых проводников одно и то же: U1 = U2 = U.

При параллельном соединении проводников электрическая цепь разветвляется. Поэтому часть общего заряда проходит через один проводник, а часть — через другой. Следовательно при параллельном соединении проводников сила тока в неразветвлённой части цепи равна сумме силы тока в отдельных проводниках: I = I1 + I2.

В соответствии с законом Ома   I = U/R,   I1 = U1/R1,   I2 = U2/R2. Отсюда следует: U/R = U1/R1 + U2/R2, U = U1 = U2,  1/R = 1/R1 + 1/R2  Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника.

При параллельном соединении проводников их общее сопротивление меньше, чем сопротивление каждого проводника.

Действительно, если параллельно соединены два проводника, имеющие одинаковое сопротивление г, то их общее сопротивление равно: R = г/2.

Это объясняется тем, что при параллельном соединении проводников как бы увеличивается площадь их поперечного сечения. В результате уменьшается сопротивление.

Из приведённых формул понятно, почему потребители электрической энергии включаются параллельно. Они все рассчитаны на определённое одинаковое напряжение, которое в квартирах равно 220 В. Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них. А также соответствие суммарной силы тока предельно допустимой силе тока.

Для параллельного соединения проводников справедливы законы:

1) напряжение на всех проводниках одинаково; 2) сила тока в месте соединения проводников равна сумме токов в отдельных проводниках; 3) величина, обратная сопротивлению всего соединения, равна сумме величин, обратных сопротивлениям отдельных проводников.

Смешанное соединение проводников

Смешанное соединение – соединение, которое является совокупностью последовательных и параллельных соединений. Для нахождения эквивалентного сопротивления нужно, “свернуть” схему поочередным преобразованием параллельных и последовательных участков цепи.

Существует и 4-й вид соединения проводников — мостовое, которое является самым сложным.

Конспект урока по физике в 8 классе «Закон Ома. Соединение проводников».

Следующая тема: «Работа и мощность электрического тока».

Источник: https://uchitel.pro/%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD-%D0%BE%D0%BC%D0%B0-%D1%81%D0%BE%D0%B5%D0%B4%D0%B8%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2/

Закон Ома для участка цепи

Закон Ома для однородного участка цепи. Сопротивление проводников. Сопротивление однородного проводника. Сверхпроводимость

Металлический проводник, подключенный к источнику тока является примером однородного участка цепи.

Немецкий физик Георг Симон Ом экспериментально изучил зависимость силы тока в металлических проводниках от напряжения, пришел к выводу: если состояние проводника с течением времени не меняется, а его температура постоянна, то для каждого проводника существует однозначная связь между I и U – вольт-амперная характеристика.

Закон Ома для участка цепи:

Электрическое сопротивление проводника

Это физическая скалярная величина, характеризующая свойство проводника уменьшать скорость упорядоченного движения свободных зарядов.

Сопротивление однородного металлического проводника постоянного сечения зависит от его геометрических размеров, формы и вещества, из которого изготовлен проводник.

Удельное сопротивление проводника  зависит от рода вещества и его состояния, например, температуры. Удельное сопротивление для определенного вещества имеет постоянное табличное значение.

Величина, обратная сопротивлению, называется электрической проводимостью данного проводника.

Параллельное и последовательное соединение проводников

Резистор – элемент электрической цепи, характеризуемый только сопротивлением электрическому току. На схемах резистор обозначается прямоугольником: 

Реостат – прибор, служащий для регулировки и получения требуемой величины сопротивления. Обозначение на схемах: 

Резисторы Реoстат

Зависимость удельного сопротивления проводника от температуры

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

1) возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;

2) изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

ρt=ρ0(1+αt),

Rt=R0(1+αt),

где ρ0, ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R0, Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К-1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Температурный коэффициент сопротивления вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.

hαi=Δρ/(ρΔT),

где hαi — среднее значение температурного коэффициента сопротивления в интервале ΔΤ.

Для всех металлических проводников α > 0 и слабо изменяется с изменением температуры. У чистых металлов α = 1/273 К-1. У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение ρ происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.

Для растворов электролитов α < 0, например, для 10%-ного раствора поваренной соли α = -0,02 К-1. Сопротивление электролитов с ростом температуры уменьшается, так как увеличение числа свободных ионов из-за диссоциации молекул превышает рост рассеивания ионов при столкновениях с молекулами растворителя.

Формулы зависимости ρ и R от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором α = const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.

Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.

Рис. 1

При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости. Металл переходит в сверхпроводящее состояние.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.

Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Тестирование онлайн

Источник: http://msk.edu.ua/ivk/Fizika/Konspekt/zakon_Oma-dlya-uchastka-cepi.php

Юрист ответит
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: